Training Feed-Forward Neural Networks Using Conjugate Gradients
ثبت نشده
چکیده
Figure 2: Scatter plot of testing results vs. training results for 32-24-10 networks, late stopping. Open circles: = 0; lled circles: = 10 03 .
منابع مشابه
Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملTraining Exemplars
Analysis of a biolgically motivated neural network for character recognition. learning for multi-layer feed-forward neural networks using the conjugate gradient method. of japanese kanji using principal component analysis as a preprocessor to an articial neural network.
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملConjugate Gradient Methods in Training Neural Networks
Training of artificial neural networks is normally a time consuming task due to iterative search imposed by the implicit nonlinearity of the network behavior. To tackle the supervised learning of multilayer feed forward neural networks, the backpropagation algorithm has been proven to be one of the most successful neural network algorithm. Although backpropagation training has proved to be effi...
متن کامل